15988016390
2138太阳集团 关于大家
产品中心
资讯动态
应用领域
品质保证
服务承诺
联系大家
在线留言

行业资讯

晶界工程对于改善304不锈钢管焊接热影响区耐晶间腐蚀性能的影响 

发布时间:2021-04-25

奥氏体不锈钢管以其良好的综合性能,在石油、化工、宇航和核工业中广泛使用[1].由于其长期在腐蚀环境中工作,不仅要求具有足够的强度,而且还应该具备良好的抗腐蚀性能.然而奥氏体不锈钢管在焊接过程中其焊接热影响区(heat-affectedzone,HAZ)中存在部分区域处于敏化加热温度(600~1000)范围内,晶界处容易析出富Cr的碳化物,在晶界附近形成贫Cr,从而造成严重的晶间腐蚀倾向[1~6],通常称这个区域为“HAZ敏化区”(weld-de-cayregion)[4~6].为了缓解敏化问题,可以在奥氏体不锈钢管中减少C含量,使用304L低碳不锈钢管代替普通的304不锈钢管,或者添加合金元素TiNb,形成碳化物以稳定C元素.

1984Watanable[7]提出了晶界设计的概念,继而在上世纪90年代形成了“晶界工程(grainbound-aryengineering,GBE)”这一研究领域.通过合适的形变及退火工艺,可以明显提高材料中的低ΣCSL(co-incidencesitelattice,低ΣCSL是指Σ≤29)晶界比例,优化其分布,改善材料与晶界有关的多种性能[9~11].GBE处理工艺已经成功应用于镍基合金、铅基合金[15,16]和奥氏体不锈钢管.

304不锈钢管是一种低层错能fcc金属材料,可用GBE的方法提高材料内的低ΣCSL晶界比例,抑制碳化物的析出,提高其抗晶间腐蚀性能.Fang[19]研究了经过不同形变及退火处理后304不锈钢管的晶界特征分布,结果表明小变形量冷轧变形(6%~10%)加上900℃长时间退火(24~96h)的热处理工艺可以明显提高低ΣCSL晶界比例.Shi-mada[20]将冷轧5%304不锈钢管927℃退火72h,低ΣCSL晶界比例超过80%(Brandon标准[21]),晶间腐蚀速率下降了约75%.然而大量研究报道中提到的提高304不锈钢管ΣCSL晶界比例的工艺方法中的退火温度都与固溶处理的温度不一致.在实际工业应用中,为了获得满意的力学性能和耐腐蚀性能,通常在成材后需要对304不锈钢管进行固溶处理,有时也进行后续的稳定化时效处理.本课题组前期工作[17,18]研究了冷变形及在固溶处理温度退火提高304不锈钢管ΣCSL晶界比例的工艺方法及机理,结果表明,通过GBE处理,可以提高304不锈钢管的低ΣCSL晶界比例,并形成大尺寸“互有Σ3n取向关系晶粒的团簇”的显微组织.由于退火温度与固溶温度一致,因此该工艺与现行生产工艺可以有效衔接.本工作对晶界工程处理后的304不锈钢管进行焊接,研究特殊结构晶界网络对于改善304不锈钢管焊接热影响区耐晶间腐蚀性能的影响.

1实验方法

实验所用304不锈钢管化学成分(质量分数,%):Cr18.31,Ni8.75,Mn1.18,Si0.58,C0.08,Fe余量.304不锈钢管原始样品使用线切割加工成100mm()×40mm()×6mm()大小,冷轧50%后在1100℃保温60min,然后马上淬入水中,作为固溶处理样品A.将原始样品冷轧50%后在1100℃固溶处理20min,然后进行GBE处理(5%的室温拉伸变形及1100℃退火30min,并淬入水中),作为样品B.1为样品处理工艺.

使用400号、1000号和2000号砂纸依次对退火处理后的样品表面进行研磨及机械抛光,再利用电解抛光的方法制备符合电子背散射衍射(EBSD)分析要求的样品表面.电解抛光液为:20%HClO4+80%CH3COOH(体积分数),抛光电压为直流40V,时间约2min.利用配有HKL-EBSD系统的CamScanApollo-300热场发射扫描电镜(SEM)对电解抛光后的样品表面进行逐点逐行扫描,扫描步长为4μm,得到材料表面扫描范围内各点的取向,通过晶界两侧晶粒的取向差判定晶界类型.本工作采用Palumbo-Aust标准:Δθmax=15oΣ-5/6(其中,Δθmax指实验中实际测量CSL取向关系与标准几何意义上的CSL取向关系之间的最大偏差角度)判定晶界类型,HKL-Channel5App自动统计不同类型晶界的长度百分比.采用钨极气体保护焊(GTA-W)对样品进行焊接,为避免带入杂质,没有使用焊料,只经过一道焊接,同时为保证相同的焊接速度,实验中将样品A和样品B如图1所示相对焊接相连,焊接速度约为6cm/min.样品焊接后在空气中冷却,使用线切割取出样品焊缝及其附近的区域,对焊接样品表面进行砂纸研磨和机械抛光.使用10%HNO3+3%HF+87%H2O(体积分数)的溶液对焊接样品进行蚀刻后,通过金相显微镜(OM)观察样品焊接处理后焊接表面不同区域的显微组织.对样品焊接表面电解抛光,使用EBSD测试得到不同区域的取向成像显微(OIM).通过对焊接样品的显微组织表征找到HAZ敏化区的位置,分别取出样品A和样品B中对应的HAZ敏化区域(分别记为A-WB-W样品),取样尺寸大小为10mm×5mm×3mm,抛光后进行晶间腐蚀实验和电化学动电位再活化(EPR)法测试.采用与金相蚀刻相同的腐蚀溶液在室温下进行晶间腐蚀实验.将样品悬挂浸泡在腐蚀溶液中,样品每个面都暴露在腐蚀溶液中.每隔一段时间将样品取出、洗净、称重(精确到0.1mg),并使用金相显微镜和SEM观察样品表面形貌.在腐蚀期的前12h内每隔3h取出样品洗净并称重;之后每隔12h取出样品洗净并称重,共浸泡96h.根据ASTMG108-94标准,使用EPR法测试样品的敏化程度[23~27],所用测试仪器为Zannium电化学工作站.EPR法利用不锈钢管的钝化再活化特性与钝化膜中主体合金元素的含量及膜的特性有关这一特点,测量试样在特定电解液(0.5mol/LH2SO4+0.01mol/LKSCN)中的再活化极化曲线,计算得到再活化率.样品再活化率的大小取决于样品敏化程度大小,而敏化程度大小反映了样品耐晶间腐蚀性能的好坏,因此再活化率大的样品敏化程度大,耐晶间腐蚀性能差.本实验分别对样品A-W和样品B-W的焊接表面和焊接截面进行了对比测试,样品使用环氧树脂封装,测试面积均为10mm×3mm,扫描速率为1mV/s.

2实验结果及讨论

2.1GBE处理后样品的晶界网络显微组织特征

2给出了样品AB不同类型晶界的OIM.2给出了样品AB的晶界特征分布统计.可见,经过晶界工程处理的样品B中低ΣCSL晶界比例为75.6%,而样品A中低ΣCSL晶界比例仅为45.0%,这是因为样品B再结晶时多重孪晶充分发展形成了大量Σ3n晶界[17,18],并且样品B中这些晶界相互连接形成了大量诸如Σ3-Σ3-Σ9及Σ3-Σ9-Σ27等类型的三叉晶界,从而形成了大尺寸“互有Σ3n取向关系晶粒的团簇”(以下简称为晶粒团簇),例如晶粒团簇C1C2(2b),而晶粒团簇之间通常为随机晶界.在统计样品晶粒尺寸时,采用等效圆直径法,并且认为孪晶也是晶粒.测得样品A晶粒尺寸为24.3μm,样品B晶粒尺寸为28.1μm,两者晶粒尺寸相差不大,但是两者晶粒团簇尺寸大小差距很大,分别为51.1124.4mm(2).

2.2焊接处理后样品的显微组织

3为焊接样品AB浸泡腐蚀后的宏观显微组织.由图可见,焊接样品表面的显微组织可以分为3个部分:焊缝(区域1)、焊接热影响区(区域23)以及基体(区域4),其中焊接HAZ又可以分为粗晶区(区域2)和敏化区(区域3).粗晶区宽度约为4mm,敏化区域宽度约为4mm.观察到样品A距离焊缝区域4mm处存在明显的HAZ敏化区,其表面因腐蚀后颜色较暗而区别于其它显微组织,而样品B表面HAZ敏化区并不明显,焊缝附近区域基本没有差别.4为焊接样品AB显微组织中不同晶界型分布OIM.OIM图中可观察到,样品B焊接热影响区(区域23)与基体一样含有大量Σ3n晶界,并且保留有大尺寸“互有Σ3n取向关系晶粒的团簇”为特征的显微组织.根据EBSDApp系统自动统计不同类型晶界的长度比例,样品B粗晶区和敏化区的低ΣCSL晶界比例分别为70.4%72.3%,与基体样品相差不大,并且都远远高于样品A各相应区域显微组织的低ΣCSL晶界比例,如图5a所示;样品B粗晶区和敏化区晶粒尺寸大小分别是32.227.9μm,也都与基体样品大小相当,如图5b所示.这表明样品B焊接热影响区的晶界网络具有很好的稳定性,可以保持基体样品的晶界特征分布.

2.3晶界网络分布特征对于HAZ敏化区晶间腐蚀性能的影响

2.3.1晶间腐蚀在腐蚀过程中,HAZ敏化区域发生晶间腐蚀导致晶粒掉落,从而样品发生质量损失.腐蚀浸泡48h后样品表面的微观形貌如图6所示.从图中可以明显观察到样品A-W的敏化区类(6a),在放大的SEM(6c)中观察到HAZ敏化区晶间腐蚀十分明显,已经有很多晶粒掉落,并且已经向内层晶粒腐蚀到一定深度.而样品B-W在表面则观察不到HAZ敏化区(6b),在对应区域放大的SEM(6d)上也观察不到晶粒的掉落,没有明显的晶间腐蚀现象.腐蚀失重结果如图7所示.结果也表明,样品B-W的腐蚀速率要小于样品A-W.这是因为样品B-WHAZ敏化区具有大量低ΣCSL晶界,低ΣCSL晶界附近由于碳化物析出造成的贫Cr现象不明显[28,29],从而该区域具有相对较好的抵抗晶间腐蚀的性能.在焊接过程中,HAZ敏化区在敏化温度区间加热的时间短,所以观察到的HAZ敏化区在整个厚度方向上并没有完全敏化.8ab分别是样品A-WB-W浸泡腐蚀96h后截面的SEM.从样品B-W截面图中观察到样品表面完整性较好.而样品A-W晶间腐蚀比较严重,并且从截面上观察HAZ敏化区在中间位置由焊接表面沿厚度方向向内腐蚀深度最深,由中间向两边区域腐蚀深度逐渐变浅,呈现为弧形.这说明样品A-W虽然已经发生了严重的晶间腐蚀,但是在整个厚度方向并没有完全敏化,所以这造成了样品A-W和样品B-W晶间腐蚀失重结果差距不是特别大;并且晶间腐蚀实验中代表HAZ敏化区的样品A-WB-W含有部分区域是属于粗晶区或者基体的,这也会减小2个样品腐蚀失重的差距.但是这种差别已经可以说明,经过晶界工程处理的304不锈钢管经焊接后,GBE处理的样品热影响区的耐晶间腐蚀性能得到显著提高.

2.3.2EPR测试  EPR法测定再活化电流Ir和活化电流Ia,以其比值再活化率(Ir/Ia×100%)作为样品的敏化程度.根据测试曲线(9)计算,样品A-W焊接表面和截面的敏化程度为0.34%0.18%,样品B-W焊接表面和截面的敏化程度为0.18%0.14%.结果表明,无论是焊接表面或者是焊接截面,样品B-W敏化程度都要小于样品A-W,尤其是样品表面,敏化程度的差距很大,表明样品B-W具有更好的耐晶间腐蚀性能.焊接表面的敏化程度要大于焊接截面,这是由于,在焊接过程中,HAZ敏化区在敏化温度区间加热的时间短,测试样品在整个厚度方向上并没有完全敏化,所以在截面上样品敏化程度较低,测得的再活化率也相对较小

3结论

(1) GBE处理过的304不锈钢管具有较好的晶界网络稳定性,焊接热影响区仍具有高比例低ΣCSL晶界,并且晶粒尺寸未明显变大.

(2) 在晶间腐蚀实验中,相对于未进行GBE处理的样品,GBE处理的样品HAZ敏化区表现出了更好的耐晶间腐蚀性能.

(3) EPR测试中,GBE处理的样品HAZ敏化区焊接表面和截面的敏化程度都要小于未经GBE处理样品的对应区域.

XML 地图 | Sitemap 地图